ANALYSIS OF ALTERNATIVES

PUBLIC VERSION

BASF Schweiz AG

Legal name of applicant:

	CH-4002 Basel, Switzerland
Submitted by:	BASF Schweiz AG
	CH-4002 Basel, Switzerland
Substance:	Diglyme (Bis(2-methoxyethyl)ether)
	CAS No 111-96-6
Use title:	Use of Diglyme as solvent in the manufacturing process of products by process used in the electronic industry in several applications.
Use number:	2

TABLE OF CONTENTS

		erzeichnis	
1	The state of the s	RY	
2	THE	PRODUCTION PROCESSES	
	Syn	thesis	
	Syn	thesis	9
	ANNUAL	TONNAGE	10
			10
1			10
4		LVENT DIGLYME	
4	1.1 Ger	neral purpose and benefits of Diglyme	11
4	1.2 Pur	pose and benefits of Diglyme	12
5	IDENTIF	FICATION OF POSSIBLE ALTERNATIVES	14
Ę	5.1 Cor	nsidered solvents	14
	5.2 The	solvent selection criteria	14
ţ		solvent assessment	
	5.3.1	Glymes:	19
	5.3.2	Acetals:	25
	5.3.3	Ethers:	
	5.3.4	Alcohols:	33
	5.3.5	Esters:	
	5.3.6	Ketones:	
	5.3.7	Nitriles:	
	5.3.8	Amines:	
	5.3.9	Amides:	
	5.3.10	Carbonates:	
	5.3.11	Aliphatic hydrocarbons:	
	5.3.12	Aromatic hydrocarbons:	
	5.3.13	Chlorinated solvents:	
	5.3.14	Miscellaneous solvents:	
6		USIONS	
7			
		n experiments for thionyl chloride compatibility	
		exhaumente in mandi emerce antibenend	

77	Own experiments for water miscibility	7.2
iglyme77		7.3

LIST OF ABBREVIATIONS

AoA: Analysis of alternatives

MSDS: Materials safety data sheet

GESTIS: Information system on hazardous substances of the German Social Accident

Insurance

GHS: Globally harmonized system for the labelling of chemicals

PubChem: Open chemistry database of the National Institutes of Health (NIH) in the USA

UV: ultraviolet light

ml: milli-liter

μl: micro-liter

CAS No.: Chemical abstracts service number

REACH: Registration, evaluation, authorization and restriction of chemicals in the

European Union

EC No.: Chemical substance number in the European Union

NMR: Nuclear magnetic resonance spectroscopy

CSR: Chemical safety report

THF: Tetrahydrofuran

DMF: N,N-Dimethylformamide

CDCI₃: deuterated Chloroform

SOCI2: Thionyl chloride

n.a.: not available or not assessed

hPa: hecto-Pascal

ca.: circa

DECLARATION

We, BASF Switzerland AG, request that the information given within this document, must be erased or blanked out, especially for the following information:

-	regarding the synthesis schemes,	
-	the description of the production process	and its inherent analytical data,
	and the trade name and application of	

and it is not to be made available to personal not involved in the verification of our appraisal for authorization of Diglyme as process solvent for our production at our facility in Schweizerhalle/Switzerland.

We hereby declare that, to the best of our knowledge of today the information is not publicly available, and in accordance with due measures of protection that we have implemented, a member of the public should not be able to obtain access to this information without our consent or that of the third party whose commercial interests are at stake.

Date, Place:

25.7.20-19 , Basel

Signatures:

Carmen Grossmann

Head of Law & Compliance Switzerland BASF Schweiz AG

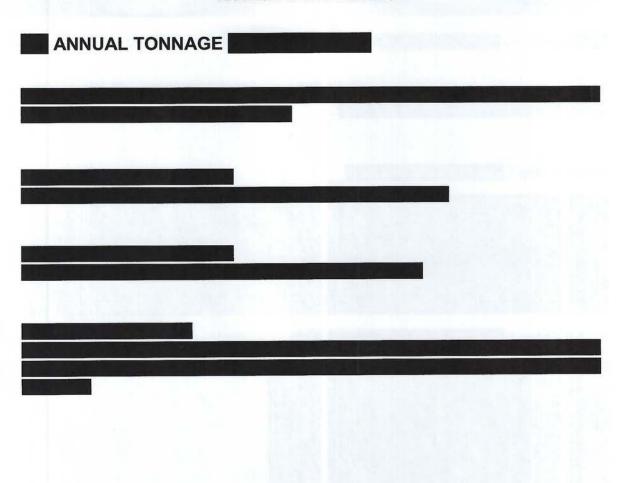
Patrick Keller

Head of Product Compliance BASF Schweiz AG

1 SUMMARY

Use of Diglyme in the production at BASF Schweiz AG, Schweizerhalle production site
BASF Schweiz AG (before its predecessor Ciba Specialty Chemicals Ltd. and even before Ciba-Geigy Ltd.) produces and sells since products by process under the trade names
These commercial products are used in the electronic industry as UV-light-patternable encapsulation materials / dielectrics for electronic parts like computer chips and integrated circuits. They were qualified over many years for specific applications by our customer. These products are used e.g. in safety relevant electronic systems, where a continued quality and reliability is of utmost importance. In order to fulfill the stringent quality measures the product of the production processes and the outcoming product compositions must be kept constant, fulfilling the product specifications.
The production processes for the manufacturing of result in product by process polymeric materials. Diglyme is the main solvent over the whole production processes, which is present in all reaction steps. The final product compositions are precipitated at the end in water to give the raw products in the form of filterable powders. Extensive washing is then needed to get rid of the large part of residues to fulfill the very demanding quality measures for electronic applications. The products are dried in a closed oven to remove residual traces of Diglyme in the wet cakes. The products are then finally purified .
Diglyme has the right polarity and viscosity to enable the dissolution of the starting materials, the intermediates and the final resins, which are formed as products by process. In addition, Diglyme is chemically inert, compatible and safe in combination with all starting materials, intermediates and the resulting resins during the whole process under the chosen reaction conditions. One reaction step must be conducted at - C. With a melting point of -64°C, Diglyme fulfills as well this criterium. Moreover, Diglyme is completely miscible with water in any ratio, so that the final products can be simply precipitated at the end of the solvent residues, side products are dissolved in water, and the products by process are obtained as filterable powders. Diglyme is readily available in large quantities and is as well an ideal solvent from an economical point of view.
Diglyme is labelled with the H-phrase H360 (May damage fertility or the unborn child.).
Diglyme has been taken up recently in Annex 1.17 of ChemOOR. Since Diglyme is the main solvent for all processes, a potential ban of the use of Diglyme represents a serious problem for our production and is an enormous threat for our business

Therefore, we apply for an authorization of Diglyme as process solvent for production processes at our production plant in CH-4133 Schweizerhalle, Switzerland. In order to support our application, we have conducted an Analysis of Alternatives (AoA), to explore the possibility of a replacement of Diglyme by another solvent. Any solvent replacing Diglyme must fulfill at least the same criteria as described above for Diglyme and must lead to the same final product by process compositions. To add a benefit compared to Diglyme, a potentially alternative solvent must have additionally a significantly better (eco)toxicity profile than Diglyme. Therefore, it must at least not be labelled with the H-phrases H361 (Suspected of damaging fertility or the unborn child.), H360 (May damage fertility or the unborn child.), H351 (Suspected of causing cancer.) and H350 (May cause cancer.). A total of 106 solvents commonly used in the chemical industry (including the solvents which were tested in other AoAs for Diglyme in the European Union) have been assessed by these selection criteria mentioned above. After this assessment, none of the tested solvents fulfilled all the criteria to be considered as potential alternative for Diglyme. Pyridine was one solvent out of the 106 tested candidates. Even that it failed in the assessment test. we have checked Pyridine experimentally as replacement solvent In the experiment, we have substituted all Diglyme parts with Pyridine. Unfortunately, this resulted in a product by process which contained new additional compounds, which was not acceptable. Even in the case that a solvent candidate would have been identified in this assessment as a potential replacement for Diglyme, extensive studies would have been necessary to be executed with the target to get exactly the same product by process compositions and qualities for as in the current processes made in Diglyme. Since these resins are complex mixtures, a solvent replacement would be much more difficult compared to the production of a single molecule in a given purity. In addition, the new products by process would have to be requalified in lengthy test series . Finally, we would have to develop new processes, which must ensure for products by process consistent qualities and safe production conditions. All these developments would take years, and it is still not sure if such a replacement would be successful at all. So far, we have shown , that we can use Diglyme safely as process solvent for the production of under appropriate safety measures exceeding local EHS requirements (see as well the CSR, which is added to this application). Since we could identify no solvent with replacement potential, we are applying for a long-term


authorization for Diglyme for our

CH-4133 Schweizerhalle

production processes at our production site in

eps involve the solvent Diglyme and are made subseque	ently in reactor
The raw products are then isolated er precipitation in water.	as filterable powders
Synthesis	
ocess step 1	
ocess step 2	
ocess step 3	ALEXANDER COM
rocess step 4	

Synthesis	
The process is similar to the process of	
Process step 1	
Process step 2	
Process step 3	
Process step 4	
Process step 5	

4 THE SOLVENT DIGLYME

4.1 General purpose and benefits of Diglyme

Diglyme is a versatile solvent with dipolar aprotic properties which is used in a variety of applications. The most important applications are:

- · Solvent for the synthesis of electronic materials
- · Solvent for the synthesis of pharmaceuticals and other chemicals
- Solvent for purification processes
- Solvent for the production of plastic and rubber products
- · Solvent for the production of binding agents
- · Solvent for electrolytes in sealed batteries
- Solvent for polytetrafluoroethylene etchant solutions
- Solvent for scientific research and development

The first mentioned use is subject to this application: solvent for the synthesis of for the electronic industry as products by process at one industrial site.

The key functionalities of diglyme are based on the following desirable physicochemical properties:

- Highly solubilizing substance in which the starting materials, intermediates and the final
 product by process are able to go into solution (eventually with a further co-solvent),
 even if they show mostly a poor or limited solubility in classical organic solvents.
- The solvent is 100% miscible in every ratio with water, which is needed to precipitate the product by process from water at the end of the synthesis route.
- Chemical inertness towards all starting materials, intermediates and the final product by process
- · Excellent chemical stability under the reaction conditions
- High boiling point of 162°C
- Low vapor pressure at 20°C: 3mm Hg

The following substance is subject of this analysis of alternatives (AoA).

Parameter	Value
Chemical name	Diglyme
CAS number	111-96-6
EC number	203-924-4
Molecular formula	CeH ₁₄ O ₃
Molecular weight	134.17 g/mol
Molecular structure	~~~~~/

Physical state (20°C and 1013 hPa)	Colorless liquid
Melting point	- 64°C
Boiling point (at 1013 hPa)	162°C
Relative density	0.943 g/cm³ at 25°C
Vapor pressure	0.99hPa at 25°C
Vapor density	4.63 (air = 1.0)
Water solubility	100% miscible
Flash point	57°C
Signal word / Pictogram	Danger Danger
H hazard statement	H226 Flammable liquid and vapor. H360 May damage fertility or the unborn child
P precautionary statements	P201, P210, P280, P308+P313, P370+P378

Diglyme is categorized as a Substance of Very High Concern (SVHC) and is listed on Annex XIV of Regulation (EC) No 1907/2006. Adverse effects are evaluated in detail in the CSR.

4.2 Purpose and benefits of Diglyme Diglyme (Bis(2-methoxyethyl)ether; CAS No 111-96-6) is used as a wellestablished organic solvent for the synthesis of which are used in the electronic industry e.g. as insulation materials and as dielectrics. The polar aprotic solvent Diglyme has the advantage to dissolve the intermediates and the final product during all reaction steps of processes. Its rather high boiling point of 162°C limits the emissions during the use of this solvent. Very importantly, Diglyme is chemically inert towards the different reactive functional groups of the all starting materials, intermediates, final products and side products, which occur during these processes. Some starting materials and intermediates are very aggressive and acidic. The chemical inertness of Diglyme is important for the product quality and for the overall process safety. Another advantage is its low melting point of -64°C, to allow the performance at - °C. The processes, which yield polymeric products by process are well adapted to the viscosity and polarity of Diglyme to give constant and reproducible product qualities. The complete water miscibility of Diglyme is another important factor during the work up of the final product, since the final products are precipitated in water. The products precipitate as filterable solids. The side products are water soluble and are washed out of the product filter cakes during the filtration steps. The residual Diglyme is washed out as well and the waste water is then burned under controlled conditions.

The AoA below has been done specifically for	but is valid as
well for	
Diglyme fulfills the following specific selection criteria for the	production
process, and is therefore an ideal solvent:	

Diglyme [111-96-6]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
selection criteria	comment	result
a) compatibility with	compatible with current production process	
b) compatibility with	compatible with current production process	
c) compatibility with thionyl chloride (4)	no changes in ¹ H-NMR detected (own experiment) and compatible with current production process	
d) compatibility with acid chloride (5)	compatible with current production process	
e) compatibility with	compatible with current production process	H
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS), compatible with current production process	
g) 100% miscible with water	100% miscible (GESTIS), compatible with current production process	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360 (MSDS)	
i) melting point below -20°C	-64°C (MSDS), compatible with current production process	
j) other selection criteria	suitable solvent to dissolve intermediates and final product in the current production process	Mile

Diglyme was added to REACH Annex XIV in August 2014 in the European Union, and more recently in Switzerland in November 2018. Therefore, an alternative solvent must be searched for.

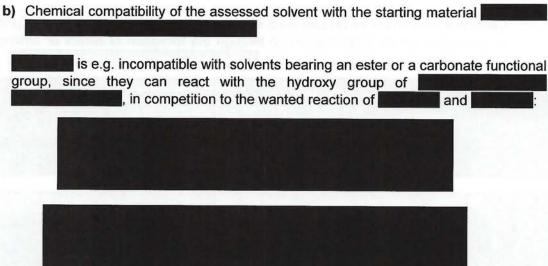
in this AoA a study on a total of 106 different solvents was performed by B	ASF trying to identify
solvent alternatives for Diglyme in the production process of our	products
The detailed study is described in chapter 5. 0	One of the evaluated
solvents with rather promising physicochemical properties has been thor	oughly evaluated as
alternative processing solvent	but finally failed.

5 IDENTIFICATION OF POSSIBLE ALTERNATIVES

5.1 Considered solvents

To find a potential alternative to the solvent Diglyme, we have assessed a total of 106 typical solvents which are commonly used in the chemical industry and / or which were assessed by other companies in the European Union during their Analysis of Alternatives for the substitution of Diglyme (Novartis, Roche Diagnostics, Merck, Bracco Imaging, Maflon, Ajinomoto, Acton, Life Technologies, PMC Isochem).

The assessed solvents are belonging to a variety of 14 different chemical classes:


- Glymes
- Acetals
- Ethers
- Alcohols
- Esters
- Ketones
- Nitriles
- Amines
- Amides
- Carbonates
- Aliphatic hydrocarbons
- Aromatic hydrocarbons
- Chlorinated solvents
- Miscellaneous solvents

5.2 The solvent selection criteria

We have assessed these	e solvents against nine general selection criteria a) to i), which are
relevant for the	production process, plus one optional selection criterium j).
These selection criteria	must be fulfilled at least, that these solvents might be considered as
potential alternatives for	Diglyme in our production process

Many of the data to the selection criteria have been retrieved either from the MSDS from Sigma-Aldrich (or from other companies, if specifically named), or from the GESTIS database (www.dguv.de/ifa/gestis-database). GESTIS is the information system on hazardous substances of the German Social Accident Insurance. Another source of information was the open chemistry database PubChem of the National Institutes of Health (NIH) in the USA (https://pubchem.ncbi.nlm.nih.gov). Other data we have obtained from own experiments, from common expert knowhow or were derived from common theory in Organic Chemistry, e.g. from the text book "March's Advanced Organic Chemistry", 6th edition, 2007, John Wiley & Sons Inc., Hoboken, New Jersey, USA.

a) Chemical compatibility of the assessed solvent with the starting material is e.g. incompatible with solvents R-OH bearing a hydroxy functional group (alcohols), since they would react with through competition to the wanted reaction with ::

c) Chemical compatibility of the assessed solvent with the reagent thionyl chloride

Thionyl chloride (4) is very reactive and aggressive. It can react with different functional groups, especially with the hydroxyl group of alcohols or with carboxylic acid groups to give chlorides or acid chlorides. It can react as well dangerously with amides (e.g. DMF), or also with ethers, e.g. in the combination with THF an explosion can occur. In the case of ketones, thionyl chloride can trigger condensation reactions leading to different side products, e.g. dimers or trimers:

Journal of the Korean Chemical Society, 49(5), 470-472; 2005

	Journal of Chemical Research, (4), 252-253; 2005
	The water which is formed in such reactions will consume the reagent thionyl chloride (4) in competition to the wanted reaction The compatibility of some of the assessed solvents with thionyl chloride has been tested in own experiments (chapter 7.1.), or information has been obtained from the MSDS (Sigma-Aldrich, if no other information is given) or from the GESTIS database or from general theory in Organic Chemistry.
d	Chemical compatibility of the assessed solvent with the intermediate carboxylic acid chloride
	Carboxylic acid chlorides (5) can react e.g. with solvents bearing a hydroxy, a primary or secondary amine functional group through the formation of esters or amides, in competition to the wanted reaction with
Г	
	N. Observing I are respectibility of the appropriate actions with
•	chemical compatibility of the assessed solvent with
	can react e.g. with solvents bearing a ketone function to form , or with solvents bearing ester or carbonate functions to form , in competition to the wanted reaction

the sales and the	
f) Chemical compatibility of	of the assessed solvent with acidic conditions:
During the	production processes, different acidic intermedia
are formed	Therefore, the solvents must be chemically in
	mpatibility for each solvent was checked in its MSDS (MS other information is given) and in the GESTIS database.
g) 100% miscibility of the as	ssessed solvent with water
At the end of the re	eaction steps, the reaction mixture is precipitated in wa
with water.	The resulting solid raw product is then filtered and of the water-solution process, the alternative solvent must be 100% misconfor each solvent was checked in the MSDS (Sigma-Aldright).
if no other information is given Where no literature data	ven) or in the GESTIS database or in PubChem. was available, or to confirm the literature data, we h ity in own experiments (chapter 7.2.).
h) Toxicology: the assessed phrases:	d solvents must not contain the H350, H351, H360 and H
	natives for Diglyme we are looking for solvents, which than Diglyme, which is labelled itself with the GHS phroof or the unborn child.)
Therefore, alternative solv H360 (may damage fertility or the unborn child), and ac	rents must at least not be labelled with the GHS-phra or the unborn child) or H361 (suspected of damaging fert dditionally must not be labelled with the GHS-phrases H3
The GHS phrases of the a	51 (suspected of causing cancer). assessed solvents were retrieved from the MSDS (Signation is given) or from the GESTIS database.
i) Melting point of the asset	ssed solvent must be below -20°C:
temperature to ensure the	has to be perform nelting point of an alternative solvent must be below to same reaction temperature window like in Diglyme. In retrieved from the MSDS (Sigma-Aldrich, if no other GESTIS database)

j) Other selection criteria

In some cases, additional selection criteria and tests have been added for further evaluation, e.g. a full experimental study in the case of the solvent Pyridine.

The selection criteria described above were assessed in tables for each solvent, and the results for each criterium was rated accordingly with a color code (green, yellow, red or white):

If a specific selection criterium is met, then the color code is green.

If a specific selection criterium is borderline, then the color code is yellow.

If a specific selection criterium is not met, then the color code is green.

If a specific selection criterium is not, or could not be assessed, or if the needed data were not available, then the comment "n. a." was added and the neutral color code white was attributed, which will not influence the overall rating.

For each solvent, an **overall rating** was given, based on the results of the specific selection criteria described above:

If none of the selection criteria mentioned above are borderline or not met (none of the color codes are yellow or red), then the **overall rating** for this solvent is "**potentially an alternative solvent**" for Diglyme. The color code for the **overall rating** is in this case green.

If at *least one* or more selection criteria mentioned above are *borderline* or *not met* (at least one of the color codes is yellow or red), then the **overall rating** for this solvent is "**not an alternative solvent**" for Diglyme. The color code for the **overall rating** is in this case ...

In the following section, for each assessed solvent, the specific **selection criteria** have been checked and compiled in tables, and the **overall rating** has been assigned.

5.3 The solvent assessment

5.3.1 Glymes:

Butyl-diglyme [112-73-2]	^^^°	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 3g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-60°C (MSDS)	
j) other selection criteria	n. a.	
Butyl-diglyme is not 100% miscible with w is not an alternative for diglyme.	rater and not compatible with acidic conditions, therefore this	s solvent
overall rating	not an alternative solvent	

overall rating	not an alternative solvent	
Di-propylene-glycol-di-methyl-ether is not therefore this solvent is not an alternative	100% miscible with water and is not 100% inert with thionyl for diglyme.	chloride,
j) other selection criteria	n. a.	
i) melting point below -20°C	n. a.	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 526g/l (GESTIS) & own experiment	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	Harris .
e) compatibility with	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	n. a.	
c) compatibility with thionyl chloride (4)	very small changes in ¹ H-NMR detected (own experiment)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
a) compatibility with	compatible (common theory in Organic Chemistry)	
selection criteria	comment	result
Di-propylene-glycol-di-methyl-ether [111109-77-4]		

Di-ethylene-glycol-di-ethyl-ether [112- 36-7]	^~~^~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	very small changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	miscible: > 100g/I (GESTIS) & own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
Diethylene-glycol-di-ethyl-ether not comp chloride, therefore this solvent is not an a	atible with acidic conditions and is not 100% inert with thionyl Iternative for diglyme.	
overall rating	not an alternative solvent	

Ethylene-glycol-diethyl-ether [629-14- 1]	^^°~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 34g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360Df (MSDS)	
i) melting point below -20°C	-74°C (MSDS)	
j) other selection criteria	n. a.	
Ethylene-glycol-diethyl-ether is a toxic CM miscible with water, therefore this solvent	IR compound, not compatible with acidic conditions and not is not an alternative for diglyme.	100%
overall rating	not an alternative solvent	

d) compatibility with acid chloride (5) e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360 (MSDS)	
i) melting point below -20°C	-58°C (MSDS)	
i) other selection criteria	n. a.	

Propylene-glycol-di-methyl-ether [7778-85-0]	~~^^	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	very small changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, almost insoluble in water (GESTIS) & own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	n. a.	<u> </u>
j) other selection criteria	n. a.	
Propylene-glycol-di-methyl-ether is not 10 not compatible with acidic conditions, the	00% miscible with water, not 100% inert with thionyl chloride arefore this solvent is not an alternative for diglyme.	and is
overall rating	not an alternative solvent	

h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360FD (MSDS)	JUNE 1
g) 100% miscible with water	100% miscible (GESTIS)	_
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	n. a.	
c) compatibility with thionyl chloride (4)	n. a.	
b) compatibility with	compatible (common theory in Organic Chemistry)	
a) compatibility with	compatible (common theory in Organic Chemistry)	
selection criteria	comment	result

Triethylene glycol dimethyl ether [112-49-2]	`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	-11
b) compatibility with	compatible (common theory in Organic Chemistry)	500
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	well soluble in water (GESTIS: 990g/l)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360D (MSDS)	
i) melting point below -20°C	-45°C (MSDS)	
j) other selection criteria	n. a.	
Triethylene glycol dimethyl ether is a toxic therefore this solvent is not an alternative	CMR compound and is not compatible with acidic condition for diglyme.	ns,
overall rating	not an alternative solvent	

Polyglyme 250 [24991-55-7]	, , , , , , , , , , , , , , , , , , ,	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	very small changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	n. a. (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (own experiment)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360 (see AoA for Diglyme, Merck p28)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	_
Polyglyme 250 is a toxic CMR compound not an alternative for diglyme.	and is not 100% inert with thionyl chloride, therefore this so	olvent is
overall rating	not an alternative solvent	

Methoxyethoxyethane [5137-45-1]	^°~~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	2-5-52
f) compatibility with acidic conditions	n. a.	
g) 100% miscible with water	not 100% miscible (own experiment)	HEAT.
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
Methoxyethoxyethane is not 100% miscib	le with water, therefore this solvent is not an alternative for	diglyme.
overall rating	not an alternative solvent	

Dibutoxyethane [112-48-1]	~~°~~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	n. a.	
g) 100% miscible with water	not 100% miscible, poor solubility in water (PubChem)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
Dibutoxyethane is not 100% miscible with	water, therefore this solvent is not an alternative for diglym	e.
overall rating	not an alternative solvent	Tieta

Methoxypropoxyethane [17081-22-0]	~~°~~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	n. a.	
g) 100% miscible with water	not 100% miscible with water in analogy to the tested solvent Methoxyethoxyethane which contains one CH ₂ -unit less.	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
Methoxypropoxyethane is not 100% misc	sible with water, therefore this solvent is not an alternative for	diglyme
overall rating	not an alternative solvent	

5.3.2 Acetals:

Dimethoxymethane [109-87-5]	\	
selection criteria	comment	result
	compatible (common theory in Organic Chemistry)	
	compatible (common theory in Organic Chemistry)	
The state of the state of	n. a.	
	n. a.	
	compatible (common theory in Organic Chemistry)	THE R
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 285g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	-105°C (MSDS)	
j) other selection criteria	n. a.	
Dimethoxymethane is not 100% miscibl solvent is not an alternative for diglyme.	e with water and is not compatible with acidic conditions, there	fore this
overall rating	not an alternative solvent	

1,1-Dimethoxyethane [534-15-6]		
selection criteria	comment	result
	compatible (common theory in Organic Chemistry)	
	compatible (common theory in Organic Chemistry)	
	n. a.	
ACTION SEATONS	n. a.	
	compatible (common theory in Organic Chemistry)	THE STREET
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with strong acids (MSDS)	The state of
g) 100% miscible with water	not 100% miscible (own experiment)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	n. a.	+
j) other selection criteria	n. a.	
1,1-Dimethoxyethane is not compatible this solvent is not an alternative for digly	with acidic conditions and is not 100% miscible with water, t	herefore
overall rating	not an alternative solvent	

1,1-Dimethoxypropane [4744-10-9]	5	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not compatible (common theory in Organic Chemistry)	
g) 100% miscible with water	not 100% miscible (own experiment)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
1,1-dimethoxypropane is not 100% misci this solvent is not an alternative for diglyr	ble with water and is not compatible with acidic conditions, the.	nerefore
overall rating	not an alternative solvent	

1,1-Dimethoxybutane [4461-87-4]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	- 1
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not compatible (common theory in Organic Chemistry)	
g) 100% miscible with water	In analogy to dimethoxymethane, 1,1-dimethoxyethane and 1,1-dimethoxypropane this solvent is not 100% miscible in water.	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	n. a.	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
1,1-dimethoxybutane is not 100% miscibithis solvent is not an alternative for diglyr	le with water and is not compatible with acidic conditions, the me.	erefore
overall rating	not an alternative solvent	

Chemistry) nic Chemistry) methoxyethane is not 100% idic conditions, therefore
methoxyethane is not 100%
nic Chemistry) methoxyethane
nic Chemistry) methoxyethane
nic Chemistry) methoxyethane
Chemistry)
104
Chemistry)
Chemistry)
result

5.3.3 Ethers:

1,4-Dioxane [123-91-1]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	Fails
i) melting point below -20°C	10°C (MSDS)	li II din
j) other selection criteria	n. a.	LT IT
1,4-dioxane is a toxic CMR compound, is 20°C, therefore this solvent is not an alte	not compatible with acidic conditions and its melting point rnative for diglyme.	s above -
overall rating	not an alternative solvent	7785

2-Methyltetrahydrofuran [96-47-9]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 150g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-20°C (MSDS)	
j) other selection criteria	n. a.	
2-Methyltetrahydrofuran is not 100% mis melting point just at -20°C, therefore this	cible with water, is not compatible with acidic conditions and solvent is not an alternative for diglyme.	has a
overall rating	not an alternative solvent	(10)

Cyclopentyl methyl ether [5614-37-9]	0.1	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	17
b) compatibility with	compatible (common theory in Organic Chemistry)	100
c) compatibility with thionyl chloride (4)	no changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	17.00
f) compatibility with acidic conditions	n. a. (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible (own experiment)	No. 11
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-140°C (MSDS)	THE RE
j) other selection criteria	n. a.	
Cyclopentyl methyl ether is not 100% mis this solvent is not an alternative for diglym	cible with water and is not compatible with acidic condition ne.	s, therefore
overall rating	not an alternative solvent	The same of

Dibutyl ether [142-96-1]	/ √~/	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	1 2 3
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not compatible with strong acids (MSDS)	Bay
g) 100% miscible with water	not 100% miscible, solubility in water: 0.3g/l (GESTIS)	NE EUR
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	THE REAL PROPERTY.
i) melting point below -20°C	-98°C (MSDS)	
j) other selection criteria	n. a.	
Dibutyl ether is not 100% miscible with wais not an alternative for diglyme.	ater and is not compatible with acidic conditions, therefore th	is solvent
overall rating	not an alternative solvent	

Diisopropyl ether [108-20-3]	人。人	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	11000
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	HILL
g) 100% miscible with water	not 100% miscible, solubility in water: 12g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-85°C (MSDS)	
j) other selection criteria	n. a.	
Diisopropyl ether is not 100% miscible wi solvent is not an alternative for diglyme.	th water and is not compatible with acidic conditions, therefor	ore this
overall rating	not an alternative solvent	

Methyl-tert-butylether [1634-04-4]	X	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 26g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-109°C (MSDS)	
j) other selection criteria	n. a.	
Methyl-tertbutyl ether is not 100% miscible this solvent is not an alternative for diglyr	le with water and is not compatible with acidic conditions, thene.	erefore
overall rating	not an alternative solvent	

Tetrahydrofuran [109-99-9]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	risk of explosion (GESTIS)	HOR
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	
i) melting point below -20°C	-108°C (MSDS)	
j) other selection criteria	n. a.	
Tetrahydrofuran is a toxic CMR compounacidic conditions, therefore this solvent is	d, is not compatible with thionyl chloride and is not compat not an alternative for diglyme.	ible with
overall rating	not an alternative solvent	1

Dimethylether [115-10-6]	\	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with hydrochloric acid (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 70g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-141°C (MSDS)	
j) other selection criteria	highly flammable gas (GESTIS)	
Dimethyl ether is not 100% miscible with flammable gas, therefore this compound it	water, is not compatible with acidic conditions and is a highly	
overall rating	not an alternative solvent	

Diethylether [60-29-7]	/	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	-
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with sulfuric and nitric acid (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 69g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-116°C (MSDS)	
j) other selection criteria	highly flammable	hardt.
Dimethyl ether is not 100% miscible with solvent is not an alternative for diglyme.	water and is not compatible with acidic conditions, therefore	this
overall rating	not an alternative solvent	

5.3.4 Alcohols:

-90°C (MSDS) n. a. , is not compatible with er, therefore this solvent is not an alternative for diglyme.	acidic
-90°C (MSDS)	
2000 #1050	
free (MSDS)	
not 100% miscible, solubility in water: 77g/l (GESTIS)	To the
not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
compatible (common theory in Organic Chemistry)	
possible formation of ester	
possible formation of alkyl chloride	Hait
possible transesterification	The sale
possible alcoholysis of	1000
comment	resul
	possible alcoholysis of possible transesterification possible formation of alkyl chloride possible formation of ester compatible (common theory in Organic Chemistry) not negatively rated (GESTIS) / not compatible with strong acids (MSDS) not 100% miscible, solubility in water: 77g/l (GESTIS)

1-methoxy-2-propanol [107-98-2]	он	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-97°C (GESTIS)	
j) other selection criteria	n. a.	
1-methoxy-2-propanol is not compatible was solvent is not an alternative for diglyme.	, there	efore this
overall rating	not an alternative solvent	

2-Butanol [78-92-2]	он	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	West (
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 85g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-108°C (MSDS)	
j) other selection criteria	n. a.	
2-Butanol is not compatible with conditions and is not 100% miscible with	water, therefore this solvent is not an alternative for diglyme	
overall rating	not an alternative solvent	

rac-Butan-1,3-diol [107-88-0]	но	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	1680
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chen	nistry)
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS	S)
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-57°C (MSDS)	
j) other selection criteria	n. a.	
rac-Butan-1,3-diol is not compatible with solvent is not an alternative for diglyme.		, therefore this
overall rating	not an alternative solvent	

Cyclohexanol [108-93-0]	Он	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 40g/l (GESTIS)	Fallence
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	20°C (MSDS)	least.
j) other selection criteria	n. a.	L. C.
Cyclohexanol is not compatible with water and its melting point is above -20°C	, is not 100% miscile, therefore this solvent is not an alternative for diglyme.	ole with
overall rating	not an alternative solvent	100

efore this solvent is not an alternative for diglyme.	and
compatible with	and
n. a.	
-83°C (MSDS)	
free (MSDS)	
100% miscible (GESTIS)	No.
not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
compatible (common theory in Organic Chemistry)	TENE
possible formation of ester	E T
possible formation of alkyl chloride	BEI
possible transesterification	
possible alcoholysis of	TEST !
comment	result
	possible alcoholysis of possible transesterification possible formation of alkyl chloride possible formation of ester compatible (common theory in Organic Chemistry) not negatively rated (GESTIS) / not compatible with strong acids (MSDS) 100% miscible (GESTIS) free (MSDS) -83°C (MSDS)

Ethylene glycol [107-21-1]	но	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	16.49
b) compatibility with	possible transesterification	The state of
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	100
d) compatibility with acid chloride (5)	possible formation of ester	QUI.
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with sulfuric or nitric acid (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-13°C (MSDS)	1
j) other selection criteria	n. a.	
Ethylene glycol is not compatible with acidic conditions and its melting point is a	above -20°C, therefore this solvent is not an alternative for d	le with liglyme.
overall rating	not an alternative solvent	fizite

Isopropanol [67-63-0]	ОН	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not compatible with strong acids (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-89°C (MSDS)	
j) other selection criteria	n. a.	
Isopropanol is not compatible with acidic conditions, therefore this solvent is	and is not compatible not an alternative for diglyme.	with
overall rating	not an alternative solvent	

1,5-Pentanediol [111-29-5]	но	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	1000
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	700
d) compatibility with acid chloride (5)	possible formation of ester	H.
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-16°C (MSDS)	
j) other selection criteria	n. a.	
1,5-Pentanediol is not compatible with above -20°C, therefore this solvent is not	and its melting an alternative for diglyme.	point is
overall rating	not an alternative solvent	

1,2-Propanediol [57-55-6]	он	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	To V
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	1
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-60°C (MSDS)	
j) other selection criteria	n. a.	
1,2-Propanediol is not compatible with is not an alternative for diglyme.	, therefore th	is solvent
overall rating	not an alternative solvent	DE H

1,3-Propanediol [504-63-2]	но	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	8 96
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-27°C (MSDS)	
j) other selection criteria	n. a.	
1,3-Propanediol is not compatible with is not an alternative for diglyme.	, therefore this s	solven
overall rating	not an alternative solvent	

tert-Butanol [75-65-0]	→ он	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	EMAN)
b) compatibility with	possible transesterification	17/8
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	1000
d) compatibility with acid chloride (5)	possible formation of ester	District Control
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	23°C (MSDS)	
j) other selection criteria	n. a.	
tert-Butanol is not compatible with -20°C, therefore this solvent is not an alter	and its melting point are for diglyme.	nt is above
overall rating	not an alternative solvent	

Methanol [67-56-1]	√н	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-98°C (MSDS)	
j) other selection criteria	n. a.	
Methanol is not compatible with conditions, therefore this solvent is not an	and is not compatible alternative for diglyme.	with acidic
overall rating	not an alternative solvent	

Ethanol [64-17-5]	∕ ОН	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	CT-T-
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-114°C (MSDS)	
j) other selection criteria	n. a.	
Ethanol is not compatible with conditions, therefore this solvent is not an	and is not compatible was alternative for diglyme.	vith acidic
overall rating	not an alternative solvent	

4-Hydroxy-4-methyl-2-pentanone [123- 42-2]	ů v v v v v v v v v v v v v v v v v v v	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with		
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-47°C (GESTIS)	
j) other selection criteria	n. a.	
4-Hydroxy-4-methyl-2-pentanone is not c and is not compatible with acidic conditio	ompatible with solvent is not an alternative for diglyme.	
overall rating	not an alternative solvent	

Polyethyleneglycole MW400 [25322- 68-3]	но Сомон	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	THE R
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	4-8°C (MSDS)	
j) other selection criteria	n. a.	
Polyethyleneglycole MW400 is not composed melting point is above -20°C, therefore the	atible with atible	nd its
overall rating	not an alternative solvent	

5.3.5 Esters:

PC (GESTIS) and is not 100% miscible wit	h water,
C (GESTIS)	
(MSDS)	
rexperiment	
100% miscible, solubility in water: 15g/l (GESTIS) & a experiment	THE ST
negatively rated (in GESTIS and in MSDS)	
sible formation of	
sible transesterification	17.0
npatible (common theory in Organic Chemistry)	
nment	result
	nment Inpatible (common theory in Organic Chemistry) Inpatible transesterification Inificant changes in ¹ H-NMR detected (own eriment) In a sible formation of the inpatible forma

2-Ethylhexyl acetate [103-09-3]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.088g/l (GESTIS)	N. SYL
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-92°C (MSDS)	
j) other selection criteria	n. a.	
2-Ethylhexyl acetate is not compatible with solvent is not an alternative for diglyme.	and is not 100% miscible with water, therefore	e this
overall rating	not an alternative solvent	

Ethyl acetate [141-78-6]	١	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	Balla.
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	N TO B
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 85.3g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-84°C (MSDS)	
j) other selection criteria	n. a.	
Ethyl acetate is not compatible with miscible with water, therefore this solvent	, is not compatible with acidic conditions and is not 10 is not an alternative for diglyme.	00%
overall rating	not an alternative solvent	

Isopropyl acetate [108-21-4]	الم	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 31g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-73°C (MSDS)	
j) other selection criteria	n. a.	
Isopropyl acetate is not compatible with miscible with water, therefore this solven	is not compatible with acidic conditions and is rational and alternative for diglyme.	not 100%
overall rating	not an alternative solvent	

n-Butyl acetate [123-86-4]	١	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	THE RE
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 4.3g/l (GESTIS)	100
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	H.
i) melting point below -20°C	-78°C (MSDS)	
j) other selection criteria	n. a.	
n-Butyl acetate is not compatible with is not an alternative for diglyme.	and is not 100% miscible with water, therefore this	solvent
overall rating	not an alternative solvent	7 7 7

gamma-Butyrolacton [96-48-0]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	Total Co
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS) and own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-45°C (MSDS)	
j) other selection criteria	n. a.	
gamma-Butyrolacton is not compatible wi conditions, therefore this solvent is not ar	th and is not compatible with a alternative for diglyme.	acidic
overall rating	not an alternative solvent	

Dimethylsuccinate [106-65-0]	· pi	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	YES
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	HE WALL
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 75g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	16°C (MSDS)	
j) other selection criteria	n. a.	
Dimethylsuccinate is not compatible with miscible with water, therefore this solvent	is not an alternative for diglyme.	not 100%
overall rating	not an alternative solvent	665

Dimethylglutarate [1119-40-0]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	The second
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 4.3g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-38°C (MSDS)	
j) other selection criteria	n. a.	
Dimethylglutarate is not compatible with miscible with water, therefore this solvent	, is not compatible with acidic conditions and is tis not an alternative for diglyme.	not 100%
overall rating	not an alternative solvent	Mark Town

Dimethyladipate [627-93-0]	2	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	L. Control
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	for the first
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: < 1g/I (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	8°C (MSDS)	The same
j) other selection criteria	n. a.	
Dimethyladipate is not compatible with miscible with water, therefore this solvent	, is not compatible with acidic conditions and is not an alternative for diglyme.	t 100%
overall rating	not an alternative solvent	THE P

Ethyllactate [97-64-3]	0 d	
selection criteria	comment	result
a) compatibility with	possible alcoholysis of	
b) compatibility with	possible transesterification	
c) compatibility with thionyl chloride (4)	possible formation of alkyl chloride	
d) compatibility with acid chloride (5)	possible formation of ester	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	hydrolysis in water (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-26°C (MSDS)	
j) other selection criteria	n. a.	
Ethyllactate is not compatible with solvent is not an alternative for diglyme.	, therefo	ore this
overall rating	not an alternative solvent	

Methylacetate [79-20-9]	1	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible transesterification	TARRE
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	can react with strong acids (GESTIS) / not negatively rated (MSDS)	4
g) 100% miscible with water	not 100% miscible, solubility in water: 240-250g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-98°C (MSDS)	THE STATE OF
j) other selection criteria	n. a.	
Methylacetate is not compatible with miscible with water, therefore this solvent	, is not compatible with acidic conditions and is not is not an alternative for diglyme.	100%
overall rating	not an alternative solvent	HE

5.3.6 Ketones:

2,6-Dimethyl-4-heptanone [108-83-8]	Lil	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	FIRE
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	100
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.5g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-46°C (MSDS)	
j) other selection criteria	n. a.	
2,6-Dimethyl-4-heptanone is not compatit solvent is not an alternative for diglyme.	ole with and is not 100% miscible with water, therefore	this
overall rating	not an alternative solvent	-

2-Butanone [78-93-3]	Ů.	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	Later .
b) compatibility with	compatible (common theory in Organic Chemistry)	1
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	DE B
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 292g/l (GESTIS) & own experiment	WE TO
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-87°C (MSDS)	
j) other selection criteria	n. a.	
2-butanone is not compatible with solvent is not an alternative for diglyme.	and is not 100% miscible with water, therefore	e this
overall rating	not an alternative solvent	

2-Hexanone [591-78-6]	الْم	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 17g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H361f (MSDS)	
i) melting point below -20°C	-57°C (MSDS)	
j) other selection criteria	n. a.	
2-hexanone is not compatible with therefore this solvent is not an alternative	is not 100% miscible with water and is a toxic CMR compound for diglyme.	,
overall rating	not an alternative solvent	

2-Methyl-3-pentanone [565-69-5]	j.	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	LLIA
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not assessed (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible (own experiment)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
2-Methyl-3-pentanone is not compatible therefore this solvent is not an alternative	with and is not 100% miscible with water for diglyme.	er,
overall rating	not an alternative solvent	

overall rating	not an alternative solvent	100
2-Pentanone is not compatible with alternative for diglyme.	and is not 100% miscible with water, therefore this solvent is no	ot an
j) other selection criteria	n. a.	
i) melting point below -20°C	-78°C (MSDS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 43g/l (GESTIS)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
e) compatibility with	possible formation of	
d) compatibility with acid chloride (5)	n. a.	
c) compatibility with thionyl chloride (4)	n. a.	
b) compatibility with	compatible (common theory in Organic Chemistry)	
a) compatibility with	compatible (common theory in Organic Chemistry)	
selection criteria	comment	resul
2-Pentanone [107-87-9] selection criteria a) compatibility with	compatible (common theory in Organic Chemistry)	res

3,3-Dimethyl-2-butanone [75-97-8]	Ů.	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 19g/l (GESTIS) & own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-50°C (GESTIS)	
j) other selection criteria	n. a.	
3,3-Dimethyl-2-butanone is not compatible therefore this solvent is not an alternative	e with and is not 100% miscible with w for diglyme.	ater,
overall rating	not an alternative solvent	W-50

3-Methyl-2-butanone [563-80-4]	١	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	TRAIN.
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	H
g) 100% miscible with water	not 100% miscible, solubility in water: 6g/l (GESTIS)	A CO
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-92°C (MSDS)	
j) other selection criteria	n. a.	
3-Methyl-2-butanone is not compatible wi miscible with water, therefore this solvent	th ith ith it is not compatible with acidic conditions and is not a is not an alternative for diglyme.	100%
overall rating	not an alternative solvent	HI TO

3-Pentanone [96-22-0]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	4
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 35g/l (GESTIS)	Bilat
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-42°C (MSDS)	
j) other selection criteria	n. a.	
3-Pentanone is not compatible with alternative for diglyme.	and is not 100% miscible with water, therefore this solvent i	s not an
overall rating	not an alternative solvent	

4-Methyl-2-pentanone [108-10-1]	الْم	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	10000
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	12.5
g) 100% miscible with water	not 100% miscible, solubility in water: 19g/l (GESTIS)	1000
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	54
i) melting point below -20°C	-80°C (MSDS)	
j) other selection criteria	n. a.	
4-Methyl-2-pentanone is not compatible v not an alternative for diglyme.	with and is not 100% miscible with water, therefore this	solvent is
overall rating	not an alternative solvent	1000

5-Methyl-2-hexanone [110-12-3]	<u></u>	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	i i i i i
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 3.1g/l (GESTIS)	The state of
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-74°C (MSDS)	
j) other selection criteria	n. a.	
5-Methyl-2-hexanone is not compatible w not an alternative for diglyme.	and is not 100% miscible with water, therefore this	solvent is
overall rating	not an alternative solvent	The same

Acetone [67-64-1]	<u></u>	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	Hall
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-94°C (MSDS)	
j) other selection criteria	n. a.	
Acetone is not compatible with	, therefore this solvent is not an alternative for	diglyme
overall rating	not an alternative solvent	- 50

Cyclohexanone [108-94-1]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	Can react dangerously with mineral acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 103g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-47°C (MSDS)	
j) other selection criteria	n. a.	
Cyclohexanone is not compatible with with water, therefore this solvent is not an	is not compatible with acidic conditions and is not 100% a alternative for diglyme.	miscible
overall rating	not an alternative solvent	

Cyclopentanone [120-92-3]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	MA
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 9.81g/l (GESTIS) and own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-51°C (MSDS)	
j) other selection criteria	n. a.	
Cyclopentanone is not compatible with this solvent is not an alternative for diglym	and is not 100% miscible with water, the	refore
overall rating	not an alternative solvent	

2-Methylhexanone [7379-12-6]	4~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	WEST.
f) compatibility with acidic conditions	not negatively rated (MSDS) / GESTIS n. a.	
g) 100% miscible with water	not 100% miscible	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
2-Methylhexanone is not compatible with an alternative for diglyme.	and is not 100% miscible with water, therefore this so	olvent is no
overall rating	not an alternative solvent	

5.3.7 Nitriles:

Acetonitrile [75-05-8]	N	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	significant changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	n. a.	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS) & own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-48°C (MSDS)	
j) other selection criteria	Can decompose to very toxic HCN (GESTIS)	
Acetonitrile is not compatible with thionyl toxic HCN on decomposition, therefore the	chloride, is not compatible with acidic conditions and can fais solvent is not an alternative for diglyme.	form very
overall rating	not an alternative solvent	

Butyronitrile [109-74-0]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	n. a.	,
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 33g/l (GESTIS) and own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-112°C (MSDS)	
j) other selection criteria	n. a.	
Butyronitrile is not compatible with acidic is not an alternative for diglyme.	conditions and is not 100% miscible with water, therefore this	s solvent
overall rating	not an alternative solvent	

5.3.8 Amines:

Diethylamine [109-89-7]		
selection criteria	comment	result
a) compatibility with	Television of the second of th	
b) compatibility with	TO THE PROPERTY OF THE PARTY OF	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	possible formation of	PICT.
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS) & own experiment	Progra
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-50°C (MSDS)	
j) other selection criteria	n. a.	
Diethylamine is not compatible with therefore this solvent is not an alternative	and is not compatible with acidic of for diglyme.	onditions,
overall rating	not an alternative solvent	

Triethylamine [121-44-8]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	1
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 80g/l (GESTIS)	No.
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	First T
i) melting point below -20°C	-115°C (MSDS)	
j) other selection criteria	n. a.	
Triethylamine is not 100% miscible with w	vater, therefore this solvent is not an alternative for diglyme.	TO THE STREET
overall rating	not an alternative solvent	

N-Methylmorpholine [109-02-4]	·	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	reacts strongly with SOCl ₂ (own experiment)	1-1-1
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	FIGURE
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS) & own experiment	TEN
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-66°C (MSDS)	
j) other selection criteria	n. a.	
N-Methylmorpholine is not compatible wild diglyme.	th thionyl chloride, therefore this solvent is not an alternative	for
overall rating	not an alternative solvent	

Pyridine [110-86-1]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	very small changes in ¹ H-NMR detected (own experiment)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with sulfuric and nitric acid (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS) and own experiment	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-42°C (MSDS)	
j) other selection criteria	Pyridine was tested experimentally as alternative solvent in the process but failed due to formation of side products (chapter 7.3.)	
Pyridine is not 100% inert with thionyl chi as solvent in the process, there	loride, not compatible with acidic conditions and experiment refore this solvent is not an alternative for diglyme.	ntally failed
overall rating	not an alternative solvent	

5.3.9 Amides:

1-Ethyl-2-pyrrolidone [2687-91-4]	CC .	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	not compatible (MSDS)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360D (MSDS)	1578
i) melting point below -20°C	-120°C (MSDS)	
j) other selection criteria	n. a.	
1-Ethyl-2-pyrrolidone is not compatible wi is not an alternative for diglyme.	th acid chlorides and is a toxic CMR compound, therefore t	his solvent
overall rating	not an alternative solvent	

1-Methyl-2-pyrrolidone [872-50-4]	CC.	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with nitric acid (GESTIS // not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	AL IN
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360D (MSDS)	
i) melting point below -20°C	-24°C (MSDS)	
j) other selection criteria	n. a.	
1-Methyl-2-pyrrolidone is not compatible value of solvent is not an alternative for diglyme.	with acidic conditions and is a toxic CMR compound, therefore	re this
overall rating	not an alternative solvent	

N,N-Dimethylacetamide [127-19-5]	\	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360D (MSDS)	
i) melting point below -20°C	-20°C (MSDS)	
j) other selection criteria	n. a.	
N,N-Dimethylacetamide is a toxic CMR co	ompound, therefore this solvent is not an alternative for dig	ilyme.
overall rating	not an alternative solvent	

N,N-Dimethylformamide [68-12-2]	\	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	FAE
c) compatibility with thionyl chloride (4)	can react dangerously with SOCI ₂ (GESTIS)	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	(11)
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360D (MSDS)	
i) melting point below -20°C	-61°C (MSDS)	
j) other selection criteria	n. a.	
N,N-Dimethylformamide is not compatible solvent is not an alternative for diglyme.	e with thionyl chloride and is a toxic CMR compound, there	fore this
overall rating	not an alternative solvent	(714

Acetamide [60-35-5]	H ₂ N	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	-
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not compatible with strong acids (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	
i) melting point below -20°C	80°C (MSDS)	
j) other selection criteria	n. a.	
Acetamide is not compatible with acidic c 20°C, therefore this compound is not an a	onditions, is a toxic CMR compound and its melting point is alternative for diglyme.	s above -
overall rating	not an alternative solvent	THE REAL PROPERTY.

5.3.10 Carbonates:

Dimethyl carbonate [616-38-6]	الم	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible pos	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 139g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-2°C (MSDS)	1001
j) other selection criteria	n. a.	
Dimethyl carbonate is not compatible with miscible with water and its melting point is	above -20°C, therefore this solvent is not an alternative for	t 100% diglyme.
overall rating	not an alternative solvent	Williams

Diethyl carbonate [105-58-8]	ملم	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible	Here
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 19.2g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-43°C (MSDS)	
j) other selection criteria	n. a.	
Diethyl carbonate is not compatible with miscible with water, therefore this solven	is not an alternative for diglyme.	ot 100%
overall rating	not an alternative solvent	

Ethylene carbonate [96-49-1]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible	post.
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 778g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	35°C (MSDS)	NO.
j) other selection criteria	n. a.	
Ethylene carbonate is not compatible with miscible with water and its melting point is	, is not compatible with acidic conditions, is no sabove -20°C, therefore this solvent is not an alternative for	t 100% diglyme.
overall rating	not an alternative solvent	10.00

Propylene carbonate [108-32-7]	广	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible pos	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 240g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-55°C (MSDS)	
j) other selection criteria	n. a.	
Propylene carbonate is not compatible wi 100% miscible with water, therefore this s	th state of the compatible with acidic conditions and colvent is not an alternative for diglyme.	is not
overall rating	not an alternative solvent	

1,2-Butylenecarbonate [4437-85-8]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	possible pos	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	possible formation of	
f) compatibility with acidic conditions	n. a.	
g) 100% miscible with water	not 100% miscible (own experiment)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS from ABCR)	
i) melting point below -20°C	n. a.	
j) other selection criteria	n. a.	
1,2-Butylenecarbonate is not compatible solvent is not an alternative for diglyme.	with and is not 100% miscible with water, the	refore this
overall rating	not an alternative solvent	

5.3.11 Aliphatic hydrocarbons:

n-Heptane [142-82-5]	~~~	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 2.2mg/l (GESTIS)	E-SI
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-91°C (MSDS)	H
j) other selection criteria	n. a.	
n-Heptane is not 100% miscible with water	er, therefore this solvent is not an alternative for diglyme.	
overall rating	not an alternative solvent	

n-Pentane [109-66-0]	^	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	7
g) 100% miscible with water	not 100% miscible, solubility in water: 39mg/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-130°C (MSDS)	
j) other selection criteria	Not suitable for production due to very high flammability.	
n-Pentane is not 100% miscible with water	er, therefore this solvent is not an alternative for diglyme.	
overall rating	not an alternative solvent	

Cis- / trans-decaline [91-17-8]	\bigcirc	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	TIT
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 6mg/l (GESTIS)	TE STATE
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-125°C (MSDS)	
j) other selection criteria	n. a.	4
Cis- / trans-decaline is not 100% miscible	with water, therefore this solvent is not an alternative for dig	glyme.
overall rating	not an alternative solvent	

Cis-decaline [493-01-6]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	1
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, highly insoluble (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-43°C (MSDS)	
j) other selection criteria	n. a.	
Cis-decaline is not 100% miscible with wa	ater, therefore this solvent is not an alternative for diglyme.	
overall rating	not an alternative solvent	

Trans-decaline [493-02-7]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, highly insoluble (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-32°C (MSDS)	
j) other selection criteria	n. a.	
Trans-decaline is not 100% miscible with	water, therefore this solvent is not an alternative for diglyme.	
overall rating	not an alternative solvent	

5.3.12 Aromatic hydrocarbons:

1,2,3,4-tetrahydronaphthalene [119-64- 2]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.05g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	
i) melting point below -20°C	-35°C (MSDS)	
j) other selection criteria	n. a.	
1,2,3,4-tetrahydronaphthalene is not 100 solvent is not an alternative for diglyme.	% miscible with water and is a toxic CMR compound, therefore	ore this
overall rating	not an alternative solvent	

Toluene [108-88-3]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 520mg/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H361d (MSDS)	
i) melting point below -20°C	-93°C (MSDS)	
j) other selection criteria	n. a.	
Toluene is not compatible with acidic concompound, therefore this solvent is not a	ditions, is not 100% miscible with water and is a toxic CMR n alternative for diglyme.	
overall rating	not an alternative solvent	

Xylenes, mixture of isomers [1330-20-7]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	- 1
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.2g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	TO A
i) melting point below -20°C	0°C	1
j) other selection criteria	n. a.	
Xylenes, mixture of isomers is not comparmelting point is above -20°C, therefore this	tible with acidic conditions, is not 100% miscible with water as solvent is not an alternative for diglyme.	and its
overall rating	not an alternative solvent	

ortho-Xylene [95-47-6]	C	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	The same
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.18g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-26°C (MSDS)	
j) other selection criteria	n. a.	
ortho-xylene is not compatible with acidic is not an alternative for diglyme.	conditions and is not 100% miscible with water, therefore the	is solvent
overall rating	not an alternative solvent	

meta-Xylene [108-38-3]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.174g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-48°C (MSDS)	
j) other selection criteria	n. a.	
meta-xylene is not compatible with acidic is not an alternative for diglyme.	conditions and is not 100% miscible with water, therefore this	s solven
overall rating	not an alternative solvent	

para-Xylene [106-42-3]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.2g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	13°C (MSDS)	
j) other selection criteria	n. a.	
para-xylene is not compatible with acidic above -20°C, therefore this solvent is not	conditions, is not 100% miscible with water and its melting p an alternative for diglyme.	oint is
overall rating	not an alternative solvent	100

Benzene [71-43-2]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 1.77g/l (GESTIS)	TO FIT
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H350 (MSDS)	
i) melting point below -20°C	6°C (MSDS)	
j) other selection criteria	n. a.	
Benzene is not compatible with acidic cor and its melting point is above -20°C, there	nditions, is not 100% miscible with water, is a toxic CMR come fore this solvent is not an alternative for diglyme.	pound
overall rating	not an alternative solvent	

Anisole [100-66-3]	O °	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	-
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.14g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-37°C (MSDS)	
j) other selection criteria	n. a.	
Anisole is not compatible with acidic cond not an alternative for diglyme.	itions and it is not 100% miscible with water, therefore this se	olvent is
overall rating	not an alternative solvent	

5.3.13 Chlorinated solvents:

Chloroform [67-66-3]	на	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	risk of formation	
f) compatibility with acidic conditions	can react dangerously with mineral acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 8g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 & H361d (MSDS)	
i) melting point below -20°C	-63°C (MSDS)	
j) other selection criteria	n. a.	
Chloroform is not compatible with water and is a toxic CMR compound, the	s not compatible with acidic conditions, is not 100% miscible refore this solvent is not an alternative for diglyme.	with
overall rating	not an alternative solvent	

Methylenechloride [75-09-2]	нсі	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	1412
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	P. T.
g) 100% miscible with water	not 100% miscible, solubility in water: 20g/l (GESTIS)	THE
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	
i) melting point below -20°C	-97°C (MSDS)	
j) other selection criteria	n. a.	
Methylene chloride is not 100% miscible an alternative for diglyme.	with water and is a toxic CMR compound, therefore this sol	vent is no
overall rating	not an alternative solvent	

Chlorobenzene [108-90-7]	a contract of the contract of	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.4g/l (GESTIS)	TO CHARLES
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	-45°C (MSDS)	1-0
j) other selection criteria	n. a.	
Chlorobenzene is not 100% miscible with	water, therefore this solvent is not an alternative for diglyme	9.
overall rating	not an alternative solvent	10000

1,2-Dichlorobenzene [95-50-1]	CI C	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.08g/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	THE S
i) melting point below -20°C	-18°C (MSDS)	
j) other selection criteria	n. a.	
1,2-Dichlorobenzene is not 100% miscible solvent is not an alternative for diglyme.	e with water and its melting point is above -20°C, therefore the	is
overall rating	not an alternative solvent	_

Carbontetrachloride [56-23-5]	CICI	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	compatible (common theory in Organic Chemistry)	
d) compatibility with acid chloride (5)	compatible (common theory in Organic Chemistry)	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 800mg/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H351 (MSDS)	
i) melting point below -20°C	-23°C (MSDS)	III.
j) other selection criteria	n. a.	
Carbontetrachloride is not 100% miscible an alternative for diglyme.	with water and is a toxic CMR compound, therefore this solv	ent is no
overall rating	not an alternative solvent	Marine .

5.3.14 Miscellaneous solvents:

Sulfolane [126-33-0]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	The same
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	n. a.	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	H360 (GESTIS)	VER.
i) melting point below -20°C	20°C (MSDS)	
j) other selection criteria	n. a.	
Sulfolane is a toxic CMR compound and laternative for diglyme.	nas a melting point above -20°C, therefore this solvent is no	ot an
overall rating	not an alternative solvent	1000

Acetic acid [64-19-7]	Он	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	n. a.	
c) compatibility with thionyl chloride (4)	possible formation of acid chloride	
d) compatibility with acid chloride (5)	possible formation of mixed acid anhydride	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	can react dangerously with strong acids (GESTIS) / not negatively rated (MSDS)	
g) 100% miscible with water	100% miscible (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	16°C (MSDS)	E-100
j) other selection criteria	n. a.	
Acetic acid is not compatible with thionyl its melting point is above -20°C, therefore	chloride, acid chlorides, is not compatible with acidic condition this solvent is not an alternative for diglyme.	ns and
overall rating	not an alternative solvent	

Water [7732-18-5]	H >0 >H	
selection criteria	comment	result
a) compatibility with	hydrolysis of	of Both
b) compatibility with	n. a.	
c) compatibility with thionyl chloride (4)	hydrolysis of thionyl chloride	
d) compatibility with acid chloride (5)	hydrolysis of acid chloride	831816
e) compatibility with	compatible (common theory in Organic Chemistry)	Till.
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water		
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (MSDS)	
i) melting point below -20°C	0°C	
j) other selection criteria	n. a.	
Water is not compatible with therefore this solvent is not an alternative	yl chloride, acid chlorides, and its melting point is above -20 for diglyme.	°C,
overall rating	not an alternative solvent	

Octamethyltrisiloxane [107-51-7]		
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	TE
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (in GESTIS and in MSDS)	
g) 100% miscible with water	not 100% miscible, highly insoluble (GESTIS)	light the
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (GESTIS)	
i) melting point below -20°C	-82°C (MSDS)	
j) other selection criteria	n. a.	
Octamethyltrisiloxane is not 100% miscib	le with water, therefore this solvent is not an alternative for	diglyme.
overall rating	not an alternative solvent	1/2 1/2 1/3

Decamethyltetrasiloxane [141-62-8]	>	
selection criteria	comment	result
a) compatibility with	compatible (common theory in Organic Chemistry)	
b) compatibility with	compatible (common theory in Organic Chemistry)	100
c) compatibility with thionyl chloride (4)	n. a.	
d) compatibility with acid chloride (5)	n. a.	
e) compatibility with	compatible (common theory in Organic Chemistry)	
f) compatibility with acidic conditions	not negatively rated (GESTIS) / not compatible with strong acids (MSDS)	
g) 100% miscible with water	not 100% miscible, solubility in water: 0.006mg/l (GESTIS)	
h) toxicology (H-phrases): must not contain H350, H351, H360, H361	free (GESTIS)	E
i) melting point below -20°C	-68°C (MSDS)	
j) other selection criteria	n. a.	
Decamethyltetrasiloxane is not compatible this solvent is not an alternative for diglym	e with acidic conditions and is not 100% miscible with water ne.	r, therefore
overall rating	not an alternative solvent	la constitución de la constituci

6 CONCLUSIONS

After the assessment of 106 different solvents, none of them could be identified as potential alternative to Diglyme for the production of
Even if a solvent would have been found to be a potential alternative, extensive experimental test studies would have been necessary, to confirm or disconfirm it as a valid alternative to Diglyme in production processes. Such tests would have taken several years, since are products by process. Their compositions made with an alternative solvent would have to match exactly the compositions resulting from the current production processes. The outcome of such experiments is in addition uncertain.
Since are used in different electronic applications, where some of them can be critical like e.g. in security systems, where a malfunction could be fatal, the requalification of would take additionally some years, again with uncertain outcome.
To avoid a rupture on the market and since we have shown to be able to work with the solvent Diglyme under safe and controlled conditions, BASF is applying for an authorization for the use of Diglyme at the production site in CH-4133 Schweizerhalle.

7 ANNEX

7.1 Own experiments for thionyl chloride compatibility

To decide in some cases, if a particular solvent was inert against thionyl chloride or not, we made the following experiment:

To 1ml of a solvent in a test tube was added 100µl of thionyl chloride at room temperature and the substances were well mixed. The test tube was then closed with a bubble counter.

After 2 hours, 50µl of the reaction mixture was taken for an ¹H-NMR in CDCl₃.

After 3 days, 50µl of the reaction mixture was taken for an 1H-NMR in CDCl3.

These NMR spectra were then compared to an $^1\text{H-NMR}$ spectrum of $50\mu\text{I}$ of the pure solvent in CDCI₃.

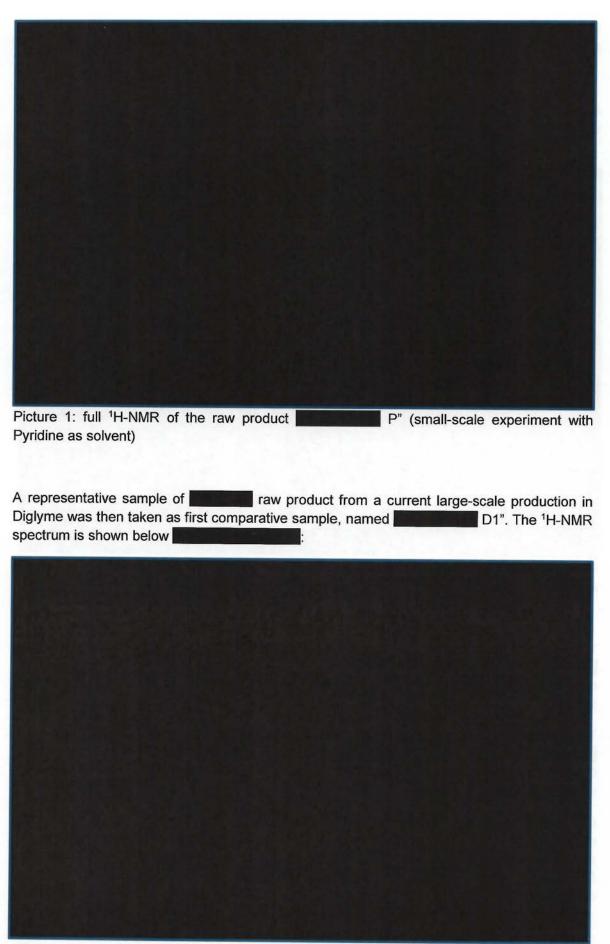
Then the compared NMR spectra were rated with the comments "no changes", "very small changes" and "significant changes".

7.2 Own experiments for water miscibility

Some data about water miscibility were not available in the MSDS or in the GESTIS database. To decide in these cases, if a particular solvent is 100% water miscible or not, we made the following experiment:

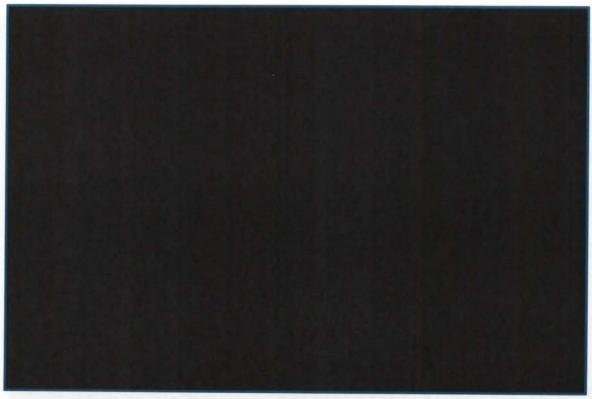
To a 10ml measurement cylinder we added 5ml of the solvent and 5ml of deionized water. Then a magnetic stirrer was added, and the cylinder was closed with a stopper. After stirring of the mixture for 15 minutes, the phases were allowed to separate during 1 hour. Then it was checked if no phase separation occurred (100% miscible) or if a phase separation occurred (not 100% miscible).

7.3 Experimental feasibility study with Pyridine as potential alternative for Diglyme

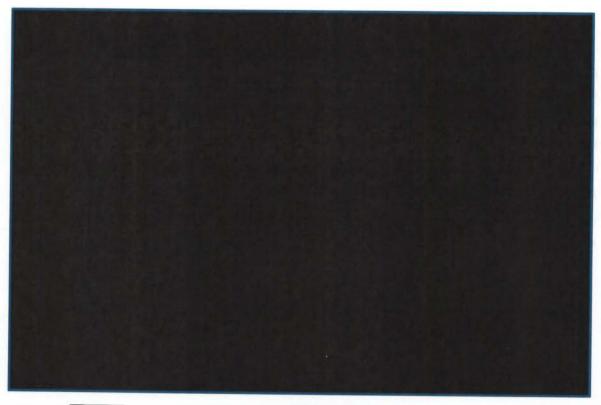

Since the selection of	criteria a) to i) in the assessment of Pyridine gave two borderline results
(chapter 5.3.8),	
we have checked th	his solvent experimentally as substitute for Diglyme in the
	process.

In the following table, some additional key data are given for the solvent Pyridine (MSDS):

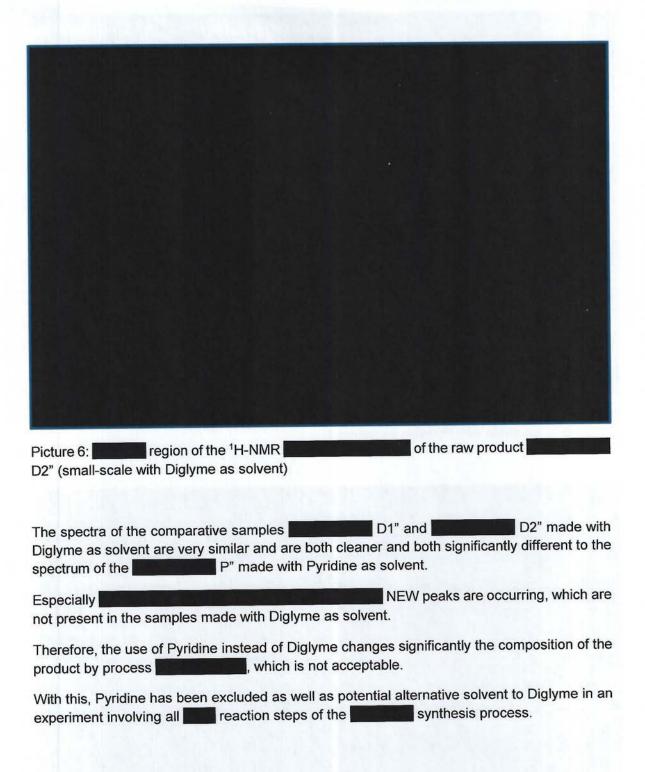
Parameter	Value	Company and the
Chemical name	Pyridine	


CAS number	110-86-1
EC number	203-809-9
Molecular formula	C ₅ H ₅ N
Molecular weight	79.10 g/mol
Molecular structure	
Physical state (20°C and 1013 hPa)	Colorless liquid
Melting point	- 42°C
Boiling point (at 1013 hPa)	115°C
Relative density	0.978 g/cm³ at 25°C
Vapor pressure	20 mmHg at 25°C
Vapor density	Not available
Water solubility	Miscible
Surface tension	Not available
Flash point	17°C
Autoignition temperature	482°C
Signal word / Pictogram	Danger (1)
H hazard statement	H225 Highly flammable liquid and vapor.
	H302+H312+H332 Harmful is swallowed, in contact with skin or if inhaled.
	H315 Causes skin irritation.
	H319 Causes serious eye irritation.
P precautionary statements	P210, P261, P280, P305+P351+P338, P370+P378, P403+P235

Pyridine has be	en checked as substitute for Diglyme under the analogous
conditions of the	production process in the solvent Diglyme, but in a down-
scaled version compared to replaced by Pyridine during the	the production process. All the parts of Diglyme have been ne synthesis.
After completion of the	process with Pyridine instead of Diglyme, a final
product named	P" was obtained. The following 1H-NMR spectrum of the raw
	obtained



Legal name of applicant: BASF Schweiz AG, CH-4002 Basel, Switzerland


Picture 2: full ¹ H-NMR of the raw product D1" (from current large-scale production in Diglyme)
A second comparative example, named D2", was then synthesized with Diglyme as solvent in the same reactor and on the same scale like P" in Pyridine. The 1H-NMR spectrum is shown below
Picture 3: full ¹ H-NMR of the raw product D2" (small-scale with Diglyme as solvent)
This second experiment in Diglyme on the small scale was made for better comparison of the products made with Diglyme as solvent, since there are inevitable scale-up differences between D1" and D2", which can lead to slightly different ¹ H-NMR spectra.
The comparison of the three ¹ H-NMR spectra of P", D1" and D2" revealed, that D1" and D2" (both made by using Diglyme as solvent) showed a very similar peak pattern with slight differences which can be attributed to scale up effects.
On the other hand, the ¹ H-NMR spectrum of P" (made with Pyridine as solvent) showed significantly different peaks especially in the region when compared to the spectra of D1" and D2", which were made with Diglyme as solvent. Below, the magnified regions of all three ¹ H-NMR spectra are shown:

Picture 4: region of the ¹H-NMR of the raw product P' (small-scale made with Pyridine as solvent)

Picture 5: region of the ¹H-NMR of the raw product D1" (from current large-scale production in Diglyme)

